Are you in Canada? Click here to proceed to the HK Canada website.

For all other locations, click here to continue to the HK US website.

Human Kinetics Logo

Purchase Courses or Access Digital Products

If you are looking to purchase online videos, online courses or to access previously purchased digital products please press continue.

Mare Nostrum Logo

Purchase Print Products or eBooks

Human Kinetics print books and eBooks are now distributed by Mare Nostrum, throughout the UK, Europe, Africa and Middle East, delivered to you from their warehouse. Please visit our new UK website to purchase Human Kinetics printed or eBooks.

Feedback Icon Feedback Get $15 Off

The Human Kinetics Canada office will be closed for the holidays beginning December 24 at 12pm EST and will reopen Thu January 2 at 9am.

FREE SHIPPING!

Free shipping for orders over $100

Research Methods in Biomechanics-2nd Edition

$152.95 CAD

Request a Review Copy


Hardback
$152.95 CAD

ISBN: 9780736093408

©2014

Page Count: 440


Research Methods in Biomechanics, Second Edition, demonstrates the range of available research techniques and how to best apply this knowledge to ensure valid data collection. In the highly technical field of biomechanics, research methods are frequently upgraded as the speed and sophistication of software and hardware technologies increase. With this in mind, the second edition includes up-to-date research methods and presents new information detailing advanced analytical tools for investigating human movement.

Expanded into 14 chapters and reorganized into four parts, the improved second edition features more than 100 new pieces of art and illustrations and new chapters introducing the latest techniques and up-and-coming areas of research. Additional enhancements in this edition include the following:

• Special features called From the Scientific Literature highlight the ways in which biomechanical research techniques have been used in both classic and cutting-edge studies.

• An overview, summary, and list of suggested readings in each chapter guide students and researchers through the content and on to further study.

• Sample problems appear in select chapters, and answers are provided at the end of the text.

• Appendixes contain mathematical and technical references and additional examples.

• A glossary provides a reference for terminology associated with human movement studies.

Research Methods in Biomechanics, Second Edition, assists readers in developing a comprehensive understanding of methods for quantifying human movement. Parts I and II of the text examine planar and three-dimensional kinematics and kinetics in research, issues of body segment parameters and forces, and energy, work, and power as they relate to analysis of two- and three-dimensional inverse dynamics. Two of the chapters have been extensively revised to reflect current research practices in biomechanics, in particular the widespread use of Visual3D software. 

In part III, readers can explore the use of musculoskeletal models in analyzing human movement. This part also discusses electromyography, computer simulation, muscle modeling, and musculoskeletal modeling; it presents new information on MRI and ultrasound use in calculating muscle parameters. Part IV offers a revised chapter on additional analytical procedures, including signal processing techniques. Also included is a new chapter on movement analysis and dynamical systems, which focuses on how to assess and measure coordination and stability in changing movement patterns and the role of movement variability in health and disease. In addition, readers will find discussion of statistical tools useful for identifying the essential characteristics of any human movement.

The second edition of Research Methods in Biomechanics explains the mathematics and data collection systems behind both simple and sophisticated biomechanics. It assists both beginning and experienced researchers in developing their methods for analyzing and quantifying human movement.

Audience

Reference for biomechanics professionals, researchers, motor behaviorists, and ergonomists; textbook for undergraduate and graduate biomechanics courses in research methods.

Part I. Kinematics

Chapter 1. Planar Kinematics

D. Gordon E. Robertson and Graham E. Caldwell

Description of Position

Degrees of Freedom

Kinematic Data Collection

Linear Kinematics

Angular Kinematics

Summary

Suggested Readings

Chapter 2. Three-Dimensional Kinematics

Joseph Hamill, W. Scott Selbie, and Thomas M. Kepple

Collection of Three-Dimensional Data

Coordinate Systems and Assumption of Rigid Segments

Transformations between Coordinate Systems

Defining the Segment LCS for the Lower Extremity

Pose Estimation: Tracking the Segment LCS

Joint Angles

Joint Angular Velocity and Angular Acceleration of Cardan Joint Angles

Summary

Suggested Readings

Part II. Kinetics

Chapter 3. Body Segment Parameters

D. Gordon E. Robertson

Methods for Measuring and Estimating Body Segment Parameters

Two-Dimensional (Planar) Computational Methods

Three-Dimensional (Spatial) Computational Methods

Summary

Suggested Readings

Chapter 4. Forces and Their Measurement

Graham E. Caldwell, D. Gordon E. Robertson, and Saunders N. Whittlesey

Force

Newton’s Laws

Free-Body Diagrams

Types of Forces

Moment of Force, or Torque

Linear Impulse and Momentum

Angular Impulse and Momentum

Measurement of Force

Summary

Suggested Readings

Chapter 5. Two-Dimensional Inverse Dynamics

Saunders N. Whittlesey and D. Gordon E. Robertson

Planar Motion Analysis

Numerical Formulation

Human Joint Kinetics

Applications

Summary

Suggested Readings

Chapter 6. Energy, Work, and Power

D. Gordon E. Robertson

Energy, Work, and the Laws of Thermodynamics

Conservation of Mechanical Energy

Ergometry: Direct Methods

Ergometry: Indirect Methods

Mechanical Efficiency

Summary

Suggested Readings

Chapter 7. Three-Dimensional Kinetics

W. Scott Selbie, Joseph Hamill, and Thomas Kepple

Segments and Link Models

3-D Inverse Dynamics Analysis

Presentation of the Net Moment Data

Joint Power

Interpretation of Net Joint Moments

Sources of Error in Three-Dimensional Calculations

Summary

Suggested Readings

Part III. Muscles, Models, and Movement

Chapter 8. Electromyographic Kinesiology

Gary Kamen

Physiological Origin of the Electromyographic Signal

Recording and Acquiring the Electromyographic Signal

Analyzing and Interpreting the Electromyographic Signal

Applications for Electromyographic Techniques

Summary

Suggested Readings

Chapter 9. Muscle Modeling

Graham E. Caldwell

The Hill Muscle Model

Muscle-Specific Hill Models

Beyond the Hill Model

Summary

Suggested Readings

Chapter 10. Computer Simulation of Human Movement

Saunders N. Whittlesey and Joseph Hamill

Overview: Modeling As a Process

Why Simulate Human Movement?

General Procedure for Simulations

Control Theory

Limitations of Computer Models

Summary

Suggested Readings

Chapter 11. Musculoskeletal Modeling

Brian R. Umberger and Graham E. Caldwell

Musculoskeletal Models

Control Models

Analysis Techniques

Summary

Suggested Readings

Part IV. Further Analytical Procedures

Chapter 12. Signal Processing

Timothy R. Derrick and D. Gordon E. Robertson

Characteristics of a Signal

Fourier Transform

Time-Dependent Fourier Transform

Sampling Theorem

Ensuring Circular Continuity

Smoothing Data

Summary

Suggested Readings

Chapter 13. Dynamical Systems Analysis of Coordination

Richard E.A. van Emmerik, Ross H. Miller, and Joseph Hamill

Movement Coordination

Foundations for Coordination Analysis

Quantifying Coordination: Relative Phase Methods

Quantifying Coordination: Vector Coding

Overview of Coordination Analysis Techniques

Summary

Suggested Readings

Chapter 14. Analysis of Biomechanical Waveform Data

Kevin J. Deluzio, Andrew J. Harrison, Norma Coffey, and Graham E. Caldwell

Biomechanical Waveform Data

Principal Component Analysis

Functional Data Analysis

Comparison of PCA and FDA

Summary

Suggested Readings

D. Gordon E. Robertson, PhD, an emeritus professor and a fellow of the Canadian Society for Biomechanics, wrote Introduction to Biomechanics for Human Motion Analysis. He taught undergraduate- and graduate-level biomechanics at the University of Ottawa and previously at the University of British Columbia, Canada. He conducts research on human locomotion and athletic activities and authors the analogue data analysis software BioProc3.

Graham E. Caldwell, PhD, an associate professor and a fellow of the Canadian Society for Biomechanics, teaches undergraduate- and graduate-level biomechanics at the University of Massachusetts at Amherst and previously held a similar faculty position at the University of Maryland. He won the Canadian Society for Biomechanics New Investigator Award and in 1998 won the Outstanding Teacher Award for the School of Public Health and Health Sciences at the University of Massachusetts at Amherst. He served as an associate editor for Medicine and Science in Sports and Exercise.

Joseph Hamill, PhD, is a professor and fellow of the Research Consortium, International Society of Biomechanics in Sports, Canadian Society for Biomechanics, American College of Sports Medicine, and National Academy of Kinesiology. He coauthored the popular undergraduate textbook Biomechanical Basis of Human Movement. He teaches undergraduate- and graduate-level biomechanics and is director of the Biomechanics Laboratory at the University of Massachusetts at Amherst. He serves on the editorial boards of several prestigious professional journals. He is adjunct professor at the University of Edinburgh in Scotland and the University of Limerick in Ireland and a distinguished research professor at Republic Polytechnic in Singapore.

Gary Kamen, PhD, is a professor and fellow of the American Alliance for Health, Physical Education, Recreation and Dance; American College of Sports Medicine; and National Academy of Kinesiology. He authored an undergraduate textbook on kinesiology, Foundations of Exercise Science, as well as a primer on electromyography, Essentials of Electromyography. He was president of the Research Consortium of AAPHERD and teaches undergraduate and graduate courses in exercise neuroscience and motor control in the department of kinesiology at the University of Massachusetts at Amherst.

Saunders (Sandy) N. Whittlesey, PhD, a graduate of the University of Massachusetts at Amherst, is a self-employed technology consultant specializing in athletic training, sporting goods, and clinical applications.

Additional Contributors

Norma Coffey, PhD, a postdoctoral researcher in statistics at the National University of Ireland at Galway, has expertise is functional data analysis and worked extensively with the Biomechanics Research Unit at the University of Limerick. Her current area of research involves applying functional data analysis techniques to time-course gene expression data.

Timothy R. Derrick, PhD, a professor in the department of kinesiology at Iowa State University, has an extensive background in signal processing and conducts research on impacts to the human body particularly from the ground during running activities.

Kevin Deluzio, PhD, is a professor in the department of mechanical and materials engineering at Queen's UUniversity in Kingston, Canada, and held a similar position at Dalhousie University. He studies human locomotion to investigate the biomechanical factors of musculoskeletal diseases such as knee osteoarthritis. He is also interested in the design and evaluation of noninvasive therapies as well as surgical treatments such as total-knee replacement.

Andrew (Drew) J. Harrison, PhD, is a senior lecturer in biomechanics in the department of physical education and sport sciences at the University of Limerick in Ireland and a fellow of the International Society for Biomechanics in Sport. He is the director of the Biomechanics Research Unit at the University of Limerick. His research focuses on biomechanics of sport performance and sport injuries.

Thomas M. Kepple, PhD, is an instructor in the department of health, nutrition, and exercise sciences at the University of Delaware. He worked for many years as a biomechanist at the National Institutes of Health on motion capture technology and gait laboratory instrumentation.

Ross H. Miller, PhD, an assistant professor in the department of kinesiology at the University of Maryland, has published papers on static optimization and forward dynamics as well as methods on nonlinear techniques of data analysis.

Scott Selbie, PhD, is an adjunct professor at Queen's University, Canada, and at the University of Massachusetts at Amherst. He is a graduate of Simon Fraser University, Canada. He is the director of research at C-Motion, developers of the Visual3D software, and president of HAS-Motion in Canada.

Brian R. Umberger, PhD, is an associate professor teaching biomechanics at the undergraduate and graduate levels in the department of kinesiology at the University of Massachusetts at Amherst. In 2010, he received the Outstanding Teacher Award for the School of Public Health and Health Sciences at the University of Massachusetts at Amherst. In his research, he uses a combination of experimental, modeling, and simulation approaches to study the biomechanics and energetics of human locomotion.

Richard E.A. van Emmerik, PhD, is a professor in the kinesiology department at the University of Massachusetts at Amherst, where he teaches motor control at the undergraduate and graduate levels. In his research, he applies principles from complex and nonlinear dynamical systems to the study of posture and locomotion.

“From how to understand and build concepts to new chapters on new techniques and research in the works, this provides a fine college-level analysis of the math and data collection systems behind biomechanics, and makes for a fine reference for any research interested in analyzing human movement.”

-- Midwest Book Review

Research Methods in Biomechanics-2nd Edition
Gordon Robertson,Graham Caldwell,Joseph Hamill,Gary Kamen,Saunders Whittlesey

Research Methods in Biomechanics-2nd Edition

$152.95 CAD

Research Methods in Biomechanics, Second Edition, demonstrates the range of available research techniques and how to best apply this knowledge to ensure valid data collection. In the highly technical field of biomechanics, research methods are frequently upgraded as the speed and sophistication of software and hardware technologies increase. With this in mind, the second edition includes up-to-date research methods and presents new information detailing advanced analytical tools for investigating human movement.

Expanded into 14 chapters and reorganized into four parts, the improved second edition features more than 100 new pieces of art and illustrations and new chapters introducing the latest techniques and up-and-coming areas of research. Additional enhancements in this edition include the following:

• Special features called From the Scientific Literature highlight the ways in which biomechanical research techniques have been used in both classic and cutting-edge studies.

• An overview, summary, and list of suggested readings in each chapter guide students and researchers through the content and on to further study.

• Sample problems appear in select chapters, and answers are provided at the end of the text.

• Appendixes contain mathematical and technical references and additional examples.

• A glossary provides a reference for terminology associated with human movement studies.

Research Methods in Biomechanics, Second Edition, assists readers in developing a comprehensive understanding of methods for quantifying human movement. Parts I and II of the text examine planar and three-dimensional kinematics and kinetics in research, issues of body segment parameters and forces, and energy, work, and power as they relate to analysis of two- and three-dimensional inverse dynamics. Two of the chapters have been extensively revised to reflect current research practices in biomechanics, in particular the widespread use of Visual3D software. 

In part III, readers can explore the use of musculoskeletal models in analyzing human movement. This part also discusses electromyography, computer simulation, muscle modeling, and musculoskeletal modeling; it presents new information on MRI and ultrasound use in calculating muscle parameters. Part IV offers a revised chapter on additional analytical procedures, including signal processing techniques. Also included is a new chapter on movement analysis and dynamical systems, which focuses on how to assess and measure coordination and stability in changing movement patterns and the role of movement variability in health and disease. In addition, readers will find discussion of statistical tools useful for identifying the essential characteristics of any human movement.

The second edition of Research Methods in Biomechanics explains the mathematics and data collection systems behind both simple and sophisticated biomechanics. It assists both beginning and experienced researchers in developing their methods for analyzing and quantifying human movement.

Audience

Reference for biomechanics professionals, researchers, motor behaviorists, and ergonomists; textbook for undergraduate and graduate biomechanics courses in research methods.

Part I. Kinematics

Chapter 1. Planar Kinematics

D. Gordon E. Robertson and Graham E. Caldwell

Description of Position

Degrees of Freedom

Kinematic Data Collection

Linear Kinematics

Angular Kinematics

Summary

Suggested Readings

Chapter 2. Three-Dimensional Kinematics

Joseph Hamill, W. Scott Selbie, and Thomas M. Kepple

Collection of Three-Dimensional Data

Coordinate Systems and Assumption of Rigid Segments

Transformations between Coordinate Systems

Defining the Segment LCS for the Lower Extremity

Pose Estimation: Tracking the Segment LCS

Joint Angles

Joint Angular Velocity and Angular Acceleration of Cardan Joint Angles

Summary

Suggested Readings

Part II. Kinetics

Chapter 3. Body Segment Parameters

D. Gordon E. Robertson

Methods for Measuring and Estimating Body Segment Parameters

Two-Dimensional (Planar) Computational Methods

Three-Dimensional (Spatial) Computational Methods

Summary

Suggested Readings

Chapter 4. Forces and Their Measurement

Graham E. Caldwell, D. Gordon E. Robertson, and Saunders N. Whittlesey

Force

Newton’s Laws

Free-Body Diagrams

Types of Forces

Moment of Force, or Torque

Linear Impulse and Momentum

Angular Impulse and Momentum

Measurement of Force

Summary

Suggested Readings

Chapter 5. Two-Dimensional Inverse Dynamics

Saunders N. Whittlesey and D. Gordon E. Robertson

Planar Motion Analysis

Numerical Formulation

Human Joint Kinetics

Applications

Summary

Suggested Readings

Chapter 6. Energy, Work, and Power

D. Gordon E. Robertson

Energy, Work, and the Laws of Thermodynamics

Conservation of Mechanical Energy

Ergometry: Direct Methods

Ergometry: Indirect Methods

Mechanical Efficiency

Summary

Suggested Readings

Chapter 7. Three-Dimensional Kinetics

W. Scott Selbie, Joseph Hamill, and Thomas Kepple

Segments and Link Models

3-D Inverse Dynamics Analysis

Presentation of the Net Moment Data

Joint Power

Interpretation of Net Joint Moments

Sources of Error in Three-Dimensional Calculations

Summary

Suggested Readings

Part III. Muscles, Models, and Movement

Chapter 8. Electromyographic Kinesiology

Gary Kamen

Physiological Origin of the Electromyographic Signal

Recording and Acquiring the Electromyographic Signal

Analyzing and Interpreting the Electromyographic Signal

Applications for Electromyographic Techniques

Summary

Suggested Readings

Chapter 9. Muscle Modeling

Graham E. Caldwell

The Hill Muscle Model

Muscle-Specific Hill Models

Beyond the Hill Model

Summary

Suggested Readings

Chapter 10. Computer Simulation of Human Movement

Saunders N. Whittlesey and Joseph Hamill

Overview: Modeling As a Process

Why Simulate Human Movement?

General Procedure for Simulations

Control Theory

Limitations of Computer Models

Summary

Suggested Readings

Chapter 11. Musculoskeletal Modeling

Brian R. Umberger and Graham E. Caldwell

Musculoskeletal Models

Control Models

Analysis Techniques

Summary

Suggested Readings

Part IV. Further Analytical Procedures

Chapter 12. Signal Processing

Timothy R. Derrick and D. Gordon E. Robertson

Characteristics of a Signal

Fourier Transform

Time-Dependent Fourier Transform

Sampling Theorem

Ensuring Circular Continuity

Smoothing Data

Summary

Suggested Readings

Chapter 13. Dynamical Systems Analysis of Coordination

Richard E.A. van Emmerik, Ross H. Miller, and Joseph Hamill

Movement Coordination

Foundations for Coordination Analysis

Quantifying Coordination: Relative Phase Methods

Quantifying Coordination: Vector Coding

Overview of Coordination Analysis Techniques

Summary

Suggested Readings

Chapter 14. Analysis of Biomechanical Waveform Data

Kevin J. Deluzio, Andrew J. Harrison, Norma Coffey, and Graham E. Caldwell

Biomechanical Waveform Data

Principal Component Analysis

Functional Data Analysis

Comparison of PCA and FDA

Summary

Suggested Readings

D. Gordon E. Robertson, PhD, an emeritus professor and a fellow of the Canadian Society for Biomechanics, wrote Introduction to Biomechanics for Human Motion Analysis. He taught undergraduate- and graduate-level biomechanics at the University of Ottawa and previously at the University of British Columbia, Canada. He conducts research on human locomotion and athletic activities and authors the analogue data analysis software BioProc3.

Graham E. Caldwell, PhD, an associate professor and a fellow of the Canadian Society for Biomechanics, teaches undergraduate- and graduate-level biomechanics at the University of Massachusetts at Amherst and previously held a similar faculty position at the University of Maryland. He won the Canadian Society for Biomechanics New Investigator Award and in 1998 won the Outstanding Teacher Award for the School of Public Health and Health Sciences at the University of Massachusetts at Amherst. He served as an associate editor for Medicine and Science in Sports and Exercise.

Joseph Hamill, PhD, is a professor and fellow of the Research Consortium, International Society of Biomechanics in Sports, Canadian Society for Biomechanics, American College of Sports Medicine, and National Academy of Kinesiology. He coauthored the popular undergraduate textbook Biomechanical Basis of Human Movement. He teaches undergraduate- and graduate-level biomechanics and is director of the Biomechanics Laboratory at the University of Massachusetts at Amherst. He serves on the editorial boards of several prestigious professional journals. He is adjunct professor at the University of Edinburgh in Scotland and the University of Limerick in Ireland and a distinguished research professor at Republic Polytechnic in Singapore.

Gary Kamen, PhD, is a professor and fellow of the American Alliance for Health, Physical Education, Recreation and Dance; American College of Sports Medicine; and National Academy of Kinesiology. He authored an undergraduate textbook on kinesiology, Foundations of Exercise Science, as well as a primer on electromyography, Essentials of Electromyography. He was president of the Research Consortium of AAPHERD and teaches undergraduate and graduate courses in exercise neuroscience and motor control in the department of kinesiology at the University of Massachusetts at Amherst.

Saunders (Sandy) N. Whittlesey, PhD, a graduate of the University of Massachusetts at Amherst, is a self-employed technology consultant specializing in athletic training, sporting goods, and clinical applications.

Additional Contributors

Norma Coffey, PhD, a postdoctoral researcher in statistics at the National University of Ireland at Galway, has expertise is functional data analysis and worked extensively with the Biomechanics Research Unit at the University of Limerick. Her current area of research involves applying functional data analysis techniques to time-course gene expression data.

Timothy R. Derrick, PhD, a professor in the department of kinesiology at Iowa State University, has an extensive background in signal processing and conducts research on impacts to the human body particularly from the ground during running activities.

Kevin Deluzio, PhD, is a professor in the department of mechanical and materials engineering at Queen's UUniversity in Kingston, Canada, and held a similar position at Dalhousie University. He studies human locomotion to investigate the biomechanical factors of musculoskeletal diseases such as knee osteoarthritis. He is also interested in the design and evaluation of noninvasive therapies as well as surgical treatments such as total-knee replacement.

Andrew (Drew) J. Harrison, PhD, is a senior lecturer in biomechanics in the department of physical education and sport sciences at the University of Limerick in Ireland and a fellow of the International Society for Biomechanics in Sport. He is the director of the Biomechanics Research Unit at the University of Limerick. His research focuses on biomechanics of sport performance and sport injuries.

Thomas M. Kepple, PhD, is an instructor in the department of health, nutrition, and exercise sciences at the University of Delaware. He worked for many years as a biomechanist at the National Institutes of Health on motion capture technology and gait laboratory instrumentation.

Ross H. Miller, PhD, an assistant professor in the department of kinesiology at the University of Maryland, has published papers on static optimization and forward dynamics as well as methods on nonlinear techniques of data analysis.

Scott Selbie, PhD, is an adjunct professor at Queen's University, Canada, and at the University of Massachusetts at Amherst. He is a graduate of Simon Fraser University, Canada. He is the director of research at C-Motion, developers of the Visual3D software, and president of HAS-Motion in Canada.

Brian R. Umberger, PhD, is an associate professor teaching biomechanics at the undergraduate and graduate levels in the department of kinesiology at the University of Massachusetts at Amherst. In 2010, he received the Outstanding Teacher Award for the School of Public Health and Health Sciences at the University of Massachusetts at Amherst. In his research, he uses a combination of experimental, modeling, and simulation approaches to study the biomechanics and energetics of human locomotion.

Richard E.A. van Emmerik, PhD, is a professor in the kinesiology department at the University of Massachusetts at Amherst, where he teaches motor control at the undergraduate and graduate levels. In his research, he applies principles from complex and nonlinear dynamical systems to the study of posture and locomotion.

“From how to understand and build concepts to new chapters on new techniques and research in the works, this provides a fine college-level analysis of the math and data collection systems behind biomechanics, and makes for a fine reference for any research interested in analyzing human movement.”

-- Midwest Book Review

Title

  • Hardback
View product