
Advanced Neuromuscular Exercise Physiology PDF
Author:
Advanced Neuromuscular Exercise Physiology uses a mix of biochemistry, molecular biology, neurophysiology, and muscle physiology to provide a synthesis of current knowledge and research directions in the field. The first text devoted solely to the topic, Advanced Neuromuscular Exercise Physiology assists readers in identifying current directions in research and new avenues for exploration.
Recognizing the rapid changes occurring in the field of neuromuscular exercise physiology, the text provides readers with a foundation of knowledge while detailing the most recent findings. Though the text is written at an advanced level, the author succeeds at making the content accessible. Analyses of research findings and research applications are highlighted in special sidebars. Detailed illustrations and graphs assist readers in understanding research findings. Chapter summaries also help readers determine the key issues presented for each topic.
The author draws attention to a variety of important topics in the field, beginning with a discussion of motor unit types, muscle blood flow, and metabolic pathways in control of metabolism, including a special discussion of the effects of type 2 diabetes. Next, the topic of fatigue is discussed. The author explains possible peripheral and central contributors to fatigue. Chapters 6 and 7 focus on whole-body endurance training, including the effects of aerobic endurance training on the protein profiles of muscle fibers and on the central nervous system. Of particular interest is the applicability of research information to the exercise rehabilitation of individuals with compromised nervous system function, such as spinal cord injury, other trauma, and neuromuscular diseases. The final chapters are devoted to resistance training, including the phenotypic responses of muscles to isometric, slow isotonic, lengthening, and plyometric training. An overview of the effects of resistance training on the nervous system is offered along with clinical applications.
Within the dynamic field of neuromuscular exercise physiology, ideas of how nerves and muscles collaborate during acute and chronic exercise are continually evolving. Advanced Neuromuscular Exercise Physiology offers an authoritative perspective of current research in the field as it seeks to encourage discussion, further study, and new research directions.
Human Kinetics’ Advanced Exercise Physiology Series offers books for advanced undergraduate and graduate students as well as professionals in exercise science and kinesiology. These books highlight the complex interaction of the various systems both at rest and during exercise. Each text in this series offers a concise explanation of the system and details how each is affected by acute exercise and chronic exercise training. Advanced Neuromuscular Exercise Physiology is the third volume in the series.
Chapter 1. Muscle Fibers, Motor Units, and Motoneurons
Muscle Heterogeneity
Orderly Motor Unit Recruitment
Smaller Motoneurons Are More Excitable
Membrane Resistivity and Motoneuron Size
Other Factors Determining Action Potential Generation
Minimal Firing Rates and Afterhyperpolarization Durations
Motoneuron Current–Frequency Relationship and Excitability
Late Adaptation
Motoneuron PICs
Summary
Chapter 2. Motor Unit Recruitment During Different Types of Movements
Measuring Human Motor Unit Recruitment
Influence of Task
Slow-Ramp Isometric Contractions
Maintained Isometric Contractions
Isometric Contractions in Various Directions
Isometric Contractions Versus Movements
Lengthening Contractions
Cocontraction of Agonists and Antagonists
Unilateral Versus Bilateral Contractions
Rhythmic Complex Contractions
MVCs
Summary
Chapter 3. Muscle Blood Flow and Metabolism
Muscle Blood Flow
Muscle Metabolism
Summary
Chapter 4. Peripheral Factors in Neuromuscular Fatigue
Intramuscular Factors and Muscle Force
Involvement of Structures Other Than Muscle
Research From Animal Experiments
Summary
Chapter 5. Central Factors in Neuromuscular Fatigue
Motoneuron Activity During Sustained Contractions
Isometric Versus Anisometric Tasks
Rotation of Motor Units?
Summary
Chapter 6. Muscular Mechanisms in Aerobic Endurance Training
Chronic Muscle Stimulation
Coordination of Muscle Protein Systems
Pretranslational Control
Translational Control
Posttranslational Modifications
Simultaneous Expression of Isoforms
Adaptations Can Occur Ex Vivo
Adaptations Appear in a Specific Sequence
Thresholds of Activity for Adaptation
Chronic Stimulation and Atrophy
Metabolic Signals and the Adaptive Response
Degenerative and Regenerative Processes
Summary
Chapter 7. Neural Mechanisms in Aerobic Endurance Training
Adaptation of the Neuromuscular Junction
Adaptations to Endurance Training
Responses of Motoneurons
Adaptations of Spinal Cord Circuits
Summary
Chapter 8. Muscle Molecular Mechanisms in Strength Training
Acute Responses in Protein Synthesis and Degradation
Connective Tissue Responses
Role of Muscle Damage
Role of Dietary Supplements
Summary
Chapter 9. Muscle Property Changes in Strength Training
Increased Muscle Fiber Cross-Sectional Area
Fiber Type Composition
Muscle Fiber Number
Muscle Composition
Muscle Architecture
Muscle Fiber Ultrastructure
Evoked Isometric Contractile Properties
Changes in Muscle Force, Velocity, and Power
Fatigue Resistance
Role of Eccentric Contractions
Summary
Chapter 10. Neural Mechanisms in Strength Training
Gains in Strength Versus Muscle Girth
Strength Gains Show Task Specificity
Surface EMG Response During MVC
Imaginary Strength Training
Reflex Adaptations
Cross Education
Decreased Activation of Antagonists
Changes in Motor Unit Recruitment
Changes in Motor Cortex
Summary
“The book manages to be comprehensive and highly detailed without being burdensome with too much unnecessary information. The cited research and its currency make the book highly credible and useful in today's classroom.”
—Doody’s Book Review (5-star review)
Multiple mechanisms involved in regulating blood flow during exercise
Strength training results in measurable changes in motor unit recruitment